If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+95x-200=0
a = 15; b = 95; c = -200;
Δ = b2-4ac
Δ = 952-4·15·(-200)
Δ = 21025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21025}=145$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(95)-145}{2*15}=\frac{-240}{30} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(95)+145}{2*15}=\frac{50}{30} =1+2/3 $
| y-4y=33y= | | 3^x=5x+15 | | 6=2s9 | | -12x+39=11(x+14 | | 3(2x+1)=-4(2x-1)+5x | | x+x+1/2+1/4+1=100 | | 4(3x+5)=-5(2x-5)+3x | | 3=-2x+8 | | -7(x+3)=7 | | b/3+8=-7b | | 3(x÷2)=15 | | 3(x-1)+13=3(4X-6) | | 2(5x+2)=-4(3x-4)+5x | | 2(5x+2)=-4(3x-4 | | 4(5x+1)=-3(4x-5)+5x | | 3a/5=1/4 | | (2+x)(-3)=2x | | 3b-6=b+9 | | 11x+18x=84.1 | | 11n+18n=84.1 | | 5w-2=-12w | | 4x^2+6x-11=(-13) | | 3(4x+3-5)=58 | | 1y-200=42 | | y2+7y+10=0 | | −1(5−x)=24 | | -42+9x=24+6x | | 9x+3=5x-2 | | 4x+13x=170 | | 2x+12+6x=36 | | t(t+5)=36 | | 3x-10=9x+2 |